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Chapter 2: Statistical Analysis of Mine Drainage Data

If discharges from abandoned mines did not vary in flow or water quality parameters through
time, it would not be necessary to use statistics to determine the baseline pollution loads of a
remining site.  In fact, the baseline determination would involve little effort, in terms of
representative sampling and chemical and data analyses.  A mine operator or regulatory agency
could simply collect one sample to initially establish the baseline flow and water quality, and
then collect a second sample at some later time before remining commences to document that the
flow and water quality parameters do not vary through time.  However, abandoned mine
discharges typically vary significantly in flow and/or quality throughout the water year, and it is
necessary to use statistics to quantify and explain these variations.  Data representing this
variation and the statistical analysis of such variation are presented in the succeeding chapters of
this report.  This chapter provides an introduction to the statistical methods that may be
employed in determining the baseline pollution load.

Variation
The fundamental problem to be addressed in determining baseline pollution load is how to
statistically summarize the natural variations in flow and water quality parameters before
remining commences, in order to enable the separation of mining-induced changes in pollution
load from natural seasonal variations in pollution load during and following remining operations. 
This problem is depicted in Figure 2.1, which shows hypothetical variations in acid load of an
abandoned mine discharge before (pre), during, and after remining.  It is important to note that
Figure 2.1 is presented for graphical description of statistical triggers only and that the after-
mining scenario represented in this figure is atypical.  In almost all cases, remining will improve
water quality.  Whatever the case, water quality data should be plotted and statistically analyzed
to determine whether adverse effects have occurred. 

Figure 2.1: Example of Acid Load Variation Before, During, and After Remining
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In Figure 2.1, the acid load varied greatly before remining commenced ranging from nearly zero
pounds of acidity per day (lbs/day) to nearly 1,000 lbs/day.  Observe that before remining, the
discharge usually varies somewhat symmetrically above and below the central value of 500
lbs/day (central tendency) and that the variations are generally contained between the values of
50 lbs/day and 950 lbs/day which have been labeled the lower and upper control levels.  Also
note that the acid load was higher than the upper control level on one or two occasions before
remining commenced.  However, during remining the acid load was above the upper control
level much more frequently, while the acid load is still varying somewhat symmetrically above
and below the central tendency value for at least the first two years during remining.  Finally,
during the last three years of remining and following the completion of remining, the acid load
still varies above and below the central tendency value, but there appears to be a trend of
increasing acidity between the central tendency value and the upper control level.

In order to determine baseline pollution load, it is necessary to statistically analyze the data to
find a measure of central tendency (e.g., mean or median) and a measure of the patterns of
variation or the dispersion of the individual observations (i.e., samples around the central
tendency as shown in Figure 2.1).  In order to separate mining-induced changes in pollution load
from natural seasonal variations, it is necessary to develop a statistical mechanism to determine
when variations in the pollution load are out of control; that is, when significant deviations from
the pre-remining baseline have occurred which can be attributed to factors other than natural
seasonal variations (e.g., problems within remining operations, unrepresentative baseline,
inappropriate monitoring). 

There are two types of variation in pollution load which are of interest in evaluating monitoring
data during and after remining in order to determine whether the variations are out of control
from the established baseline conditions.
  
� Dramatic Trigger - The first and most obvious pattern of variation occurs when there are a

series of extreme events which consistently exceed the upper control level as shown in
Figure 2.1 during the first two years of remining.  During this time, the variation pattern
indicates a sudden and dramatic increase in pollution load which may be attributed to
remining, and which is referred to as the dramatic trigger.  

� Subtle Trigger - The second pattern of variation of concern is a trend of gradually increasing
pollution load (as shown in the right side of Figure 2.1,) where the general pattern of acid
load observations is increasing above the baseline central tendency value for several years
without ever exceeding the upper control level.  In this case, when the central tendency
values are calculated for each water year during remining, a corresponding gradual increase
in central tendency values will be detected until a significant difference exists between the
baseline central tendency and a central tendency calculated for a water year after remining
has commenced.  As this second pattern of variation is much less dramatic than the first, and
takes much more time and effort to detect, it is referred to as the subtle trigger.

The reason that these two patterns of variation are referred to as triggers is that they can be used
to set off or initiate the requirement for a mine operator to treat a pre-existing discharge to a
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numerical effluent limitation.  In issuing a remining permit, the regulatory authority makes a
determination that the site can be mined without causing additional pollution, and that the
pollution abatement plan in the permit application demonstrates that the existing baseline
pollution load will be reduced.  The mine operator and the regulatory authority anticipate
environmental improvement through remining without the need to treat the pre-existing
discharge.  However, the possibility exists that degradation of the discharge may occur,
temporarily or permanently, as the result of remining if the pollution abatement plan is not
implemented as required or if unforeseen circumstances develop.

If fair and reasonable consideration is given to the concerns of the mine operator and protection
of the environment, the treatment triggers must be carefully established so that they are:  (a)  not
set off prematurely or erroneously, adversely affecting the mine operator, or  (b)  set off too late
resulting in additional mine drainage pollution without treatment.  Even the most thorough
representative sampling program of a given water year may not capture the most extreme events,
because the worst storm (flood) and the most severe drought are rare events and do not occur in
every water year.  Although it is unreasonable to require a mine operator to collect baseline
water samples until the 100 year storm event or a significant drought are captured, it is also
unreasonable to require the mine operator to commence treatment the first time that the extreme
event or upper control level of the baseline is exceeded.  The reagent costs alone for treating
some pre-existing pollutional discharges can be several hundred dollars per day and the total cost
of building a treatment plant can be more than one million dollars.  Costs for treatment of some
worst case post mining discharges in the State of Pennsylvania were as high as $ 700 /day
(hydrated lime).  Cost for construction of these discharges were greater than $ 2.1 million.       

Conversely, the regulatory authority is not fulfilling its environmental protection mandate if the
upper control level and extreme events of baseline are routinely being exceeded and the
additional mine drainage pollution effects are obvious, but treatment has not yet been required
because statistical analysis of the water year has not been completed.  In light of these concerns,
problems that need to be resolved statistically with respect to the dramatic and subtle triggers
are:

� Dramatic trigger -  how high should the upper control level or tolerance level be, and how
many excursions above this upper level are tolerable before it is determined that the system
is out of control and treatment of the discharge must be initiated.  

� Subtle trigger -  how much deviation from the baseline central tendency value is tolerable in
succeeding water years before it can be determined that a significant difference exists.  

Both of these problems may be addressed statistically with a relatively simple quality control
approach to the data.

Normal Distribution
The quality control approach used in this report and much of statistical work in general, is
dependent upon the frequency distribution of the sample data.  It is important to collect
representative samples, because it is usually impossible or impractical to measure and analyze
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the entire population of the parameter being studied.  Whether the samples represent variation in
a single point through time (e.g., seasonal variations in the acidity of an abandoned mine
discharge) or spatial variations in a parameter of interest (e.g., variations in the mean acidity of
surface mine discharges from the lower Kittanning coal seam of 200 sites in western
Pennsylvania), one of the first steps of statistical analysis, typically, is to plot the frequency
distribution of the data.  According to Sir Ronald A. Fisher (1970), the founder of many
important statistical advances since the 1920�s:

�The idea of an infinite population distributed in a frequency distribution in respect of
one or more characters is fundamental to all statistical work.  From a limited experience,
for example, of individuals of a species, or of the weather of a locality, we may obtain
some idea of the infinite hypothetical population from which a sample is drawn, and so of
the probable nature of future samples to which our conclusions are to be applied.  If a
second sample belies this expectation we infer that it is, in the language of statistics, drawn
from a different population; that the treatment to which the second sample of organisms
had been exposed did in fact make a material difference, or that the climate (or the methods
of measuring it) had materially altered.  Critical tests of this kind may be called tests of
significance, and when such tests are available we may discover whether a second sample
is or is not significantly different from the first.�  (p. 41)

Fisher (1970) also states:

�Statistics may be regarded as (i)  the study of populations, (ii)  the study of variation,
(iii) the study of methods of the reduction of data (p. 1)� [and] �.A statistic is a value
calculated from an observed sample with a view to characterizing the population from
which it is drawn.�  (p. 41)

The frequency distribution is a graphical summary of the sample data, and its shape and
accompanying summary statistics enable a greater understanding of how a variate behaves.  This
understanding is gained through comparison of the frequency distribution of observed data to the
shape and characteristics of a known mathematical or theoretical distribution, such as the normal
distribution or binomial distribution.  The normal distribution shown in Figure 2.2 is the most
widely known and most useful frequency distribution.  It is also known as the Gaussian error
curve or bell-shaped curve.

The key statistical parameters of a normal frequency distribution are the mean, as the measure of
central tendency (i.e., shown as  in Figure 2.2), and the standard deviation or the variance, asX
the measure of variation or dispersion (i.e., the standard deviation is shown as  in Figure 2.2). $σ
The mean is the arithmetic average of the data, which is computed by dividing the sum of all of
the observations by the total number of observations.  The variance is the sum of the squares of
the deviations of all of the observations from the mean.  The standard deviation is the positive
square root of the variance.
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According to Fisher (1970) and Griffiths (1967), the sample mean ( ) and standard deviationX
( ) determined from a random sample are best estimators of the corresponding population$σ
mean ( ) and standard deviation ( ) in a normal distribution.  They are defined as "bestµ σ
estimators" because these statistics are consistent, efficient, and sufficient, and in the most
desirable outcome, unbiased as well.  A primary goal of parametric statistical analysis is that the
statistical estimators (e.g., mean and standard deviation) of the sample distribution will converge
on the population parameters (i.e., the true mean and variance of the entire population).  Most
parametric statistical methods, including tests of significance, are based upon:  (a)  the use of the
mean and the standard deviation as best sufficient statistical estimators, and  (b)  the assumption
that the sample data are normally distributed.

Figure 2.2: Example of Normal Distribution

In addition, probability statements, which are used in significance testing, quality control
techniques and other statistical methods, are frequently based upon some special properties of
the normal distribution (see Griffiths, 1967, pp. 263 � 267).  The area under the curve of the
normal distribution in the interval between the mean minus one standard deviation and the mean
plus one standard deviation (as shown in Figure 2.2, from Griffiths, 1967, p. 259) is 67.45%,
while 95.46% of the area of the normal distribution is contained in the interval of the mean plus
and minus two standard deviations (i.e.,  +/- 2  ).  Therefore, from the table of areas of theX $σ
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normal distribution it may be stated that 95% of the area of the distribution will be contained in
the interval of  +/- 1.96  , Griffiths, 1967, p. 265).X $σ

Quality Control - Normal Distribution
The type of statistical analysis known as quality control was largely developed by Shewhart
(1931, 1939) and others to evaluate tolerable amounts of variation in manufacturing processes. 
Since then, the quality control approach has been applied to many other fields of study.  Many of
the variates studied in very large samples, such as the number of defective light bulbs produced
by a manufacturing process, were empirically shown to closely approximate a normal
distribution.  Consequently, the most typical applications of quality control statistics involve a
normal distribution.  

The frequency distribution of the data is essentially arranged along the vertical axis of the quality
control graph as shown in Figure 2.3.  The actual histogram of value classes is typically omitted
from the graph.  The mean of the data set, or grand mean of the means of sets of observations, is
usually plotted as the measure of central tendency.  Quality control levels, known as confidence
intervals, are established at plus and minus two or three standard deviations from the mean. 
Individual observations through time, or comparisons of sets of data representing variations in
operator performance, are then plotted along the horizontal axis in order to evaluate the patterns
of variation in these observations with respect to the confidence intervals around the mean.  As
95.46% of the area of the normal frequency distribution is contained in the interval of the mean
+/- two standard deviations, it is expected that approximately 95 out of 100 observations will
occur within the confidence intervals.  

Figure 2.3: Example of a Quality Control Graph (Griffiths, 1967, p. 318)

According to Griffiths (1967):
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If the observations are in control, they will fluctuate randomly around the mean value, and
some 5 in 100 will fall outside the 2 limits or 3 in 1,000 will be expected outside the 3σ σ
limits.  If a number of observations exceeding these expectations fall outside the control
limits, these observations may be looked upon as not belonging to the same population.

The fact that the observations are ordered, however, permits an extension of this
generalization; the observations need not fall outside the limits to indicate lack of control. 
For example, in an industrial process which produces a homogeneous product when the
process is in control, the wear on a machine may develop gradually; then a series of
observations will show a systematic trend, i.e., the characteristic of random variation will be
lost.  Such trends arise from a systematic bias, and it is customary to search for an
�assignable cause� and remove the interfering source of variation by replacing worn parts in
the machine and so on.  The systematic trend may appear and the presence of such a trend
warns the observer that his observations are not in control (p. 318).

Asymmetric Distribution
A major problem that is frequently encountered in the statistical analysis of water quality
parameters and many other variates of natural systems behavior is that the sample data are not
normally distributed (Reimann and Filzmoser, 2000).  In analyzing the concentrations of acidity,
iron, sulfates, or other water quality parameters of abandoned mine discharges, ground water and
surface water, it is typical to have many small valued observations in the data set and a few very
large values representing extreme events.  This type of behavior appears to be relatively common
for variates which are related to seasonal variations, climatic effects, and geological or biological
systems (for examples, see Aitcheson & Brown (1973), Griffiths (1967), and Krumbein &
Graybill (1965)).  The frequency distribution for this type of variate is highly asymmetric as
shown in Figure 2.4.  The few very high valued observations cause the frequency distribution to
have a long tail toward the high extremes, which is a condition of asymmetry termed positive
skewness.

Figure 2.4 : Stem-and-leaf of Discharge (Example of Asymmetric Distribution)      
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In the normal frequency distribution, the values are symmetrically distributed around the mean,
and the mean and standard deviation are best statistical estimators of the population.  In a highly
skewed frequency distribution, the mean may not be the best estimator of central tendency, and
the standard deviation may not be the best measure of dispersion. 

For example, the few extreme values bias the mean toward the high values, and 95% of the area
of the curve is not contained within ± 2 standard deviations from the mean.  In cases where the
frequency distribution is not normal, the concept of the quality control approach may still be
pursued, but data analysis adjustments must be made to either:  (a)  transform the observed
frequency distribution to approximate normality, or  (b)  employ different statistics (e.g., use of
the median instead of the mean) in the quality control technique.

The logarithmic transformation of the data is usually the most effective transformation to reduce
positive skewness in the frequency distribution.  The lognormal distribution had been
extensively described by Aitcheson and Brown (1973) and examples of lognormal behavior of
variates are found in Griffiths (1967), Krumbein and Graybill (1965) and other sources. 
However, a logarithmic transformation of the raw data will not solve all problems of asymmetry
or other conditions of non-normality of the frequency distribution.  Additional information on
transformations of data is described later in this chapter and in Box and Cox (1964), Griffiths
(1967, p. 306), and Krumbein and Graybill (1965, p. 216).

In order to evaluate different statistics that may be applicable to the quality control approach, it
is necessary to explain and differentiate nonparametric statistics, distribution free statistics, and
order statistics.  It is also necessary to compare exploratory data analysis with confirmatory data
analysis.  

� Conventional Parametric Statistical Analysis - statistical estimators, such as the mean and
standard deviation, are used to approximate the corresponding parameters of the population,
the true mean and variance.  

� Nonparametric Statistical Analysis - tests of significance are performed without depending
on the constraints of a known frequency distribution and the parameters of that known
frequency distribution (e.g., the mean and variance of the normal distribution). 
Nonparametric statistical tests are also used where the scale level of the data are only
nominal or ordinal, rather than on interval or ratio scales used in more rigorous statistical
analyses. However, if the data conform to a known frequency distribution, there are
parameters for that distribution.

� Distribution-free Statistics - is used to describe statistical analyses where parameters are
estimated independently of the shape of the frequency distribution, such as the use of the chi-
square statistic to test the class by class departure from the expected value.

� Order Statistics - is applied to statistical analyses where the shape of the frequency
distribution is important, but is evaluated less rigorously than in conventional parametric
statistical analyses.  In order statistics, the median is typically used as the measure of central
tendency instead of the mean, and quartiles or related values are typically used to measure
dispersion, the spread of values about the median, or the shape of the distribution.  The
position of the median in an ordered set of observations is the middlemost position.  For
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example, when 15 values are ordered from low to high, the depth (position) of the median is
at the (N+1)/2 position = 8th position.  The position of the two quartiles (Q1, Q3) in this
ordered set is halfway between the median and the extremes (e.g., lower quartile (Q1) is at
the (8+1)/2 = midway between the 4th and 5th observation).  The quartile (Q1 in this case), is
found by counting in from either extreme to the 4th observation.  The quartiles essentially
divide the frequency distribution into fourths, so that half of the values in the distribution are
contained in the interval between the lower quartile and the upper quartile as shown in Figure
2.5 (i.e., within box).  Other values of spread or dispersion are similarly determined based
upon their rank or order in the frequency distribution.

Figure 2.5: Net Alkalinity Boxplot for Fisher Mine Site Discharge (from U.S. EPA Coal

Remining Statistical Support Document, March 2000, EPA-821-B-00-001)

As a final note on the relationships of the various frequency distributions discussed herein and
elsewhere (see Fisher (1970), Fisher (1973), Griffiths (1967), Krumbein and Graybill (1965) and
Tukey (1977)), regardless of the shape of the frequency distributions in samples of water quality
parameters or almost any other variable of interest, the distribution of the means of sample sets
or means of repeated sampling efforts tend to be normally distributed.  Generally, frequency
distributions tend toward normality as the number of observations in the sample set becomes
very large (i.e., greater than 1 million observations).  However, most samples of mine drainage
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data used in remining permitting and monitoring will contain a relatively small number of
observations (i.e., less than 30).

Exploratory and Confirmatory Data Analyses
Most of the statistical analyses discussed thus far, especially significance tests, can be included
in the realm of confirmatory data analysis rather than exploratory data analysis.

According to Tukey (1977):

The principles and procedures of what we call confirmatory data analysis are both
widely used and one of the great intellectual products of our century.  In their
simplest form, these principles and procedures look at a sample -- and at what that
sample has told us about the population from which it came -- and assess the
precision with which our inference from sample to population is made.  We can no
longer get along without confirmatory data analysis.  But we need not start with
it�.(p. vi) 

Once upon a time, statisticians only explored.  Then they learned to confirm exactly �
to confirm a few things exactly, each under very specific circumstances.  As they
emphasized exact confirmation, their techniques inevitably became less flexible.  The
connection of the most used techniques with past insights was weakened.  Anything
to which a confirmatory procedure was not explicitly attached was described as
�mere descriptive statistics,� no matter how much we had learned from it (p. vii). 

Exploratory data analysis is detective work...  Confirmatory data analysis is
judicial or quasi-judicial in character�. Unless the detective finds the clues, judge or
jury has nothing to consider.  Unless exploratory data analysis uncovers
indications, usually quantitative ones, there is likely to be nothing for
confirmatory data analysis to consider. (p. 1).

From the preceeding discussion of statistical analyses, it is apparent that there are many
statistical methods and approaches to analyzing data.  In order to establish the statistical methods
to be used in analyzing abandoned mine discharge data for remining permitting and monitoring,
it is necessary to consider the relationship between the characteristics of the sample data and the
types of questions to be addressed in determining the baseline pollution load of the discharges. 
Sometimes, the characteristics of the available data do not lend themselves well to the type of
statistical analysis which would be most appropriate to solve the problem.  The type of statistical
analysis which is:  (1)  appropriate to apply to a specific data set, and (2)  desired or necessary to
answer specific questions about the data depends upon numerous factors.  These factors include:  

� the sampling method,
� the number of observations included in the sample,
� the interval between observations in time (or space),
� the number of measurements performed (e.g., analyzing a water sample for 12 chemical

constituents),
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� the scale level of the data (i.e., nominal, ordinal, interval, ratio), and 
� the frequency distribution of the data. 

Univariate/Bivariate and Multivariate Analysis
Statistical analyses which evaluate a single variable are referred to as univariate analyses, while
bivariate analyses evaluate the relationship between two variables.  Multivariate statistical
analyses concurrently evaluate the relationships among more than two variables.  Statistical
methods involving the frequency distribution of a variable(e.g., chi-square �goodness of fit� test,
T-test of the significance of means, F-test of variance ratios) are examples of univariate
statistical analyses.  Linear regression and correlation (e.g., correlation coefficient (r), and
coefficient of determination (r 2)) are examples of bivariate analyses, while multiple regression,
factor analysis, principal components analysis, and cluster analysis are examples of multivariate
analyses.  

It is obvious that it will be very difficult, if not impossible, to use a univariate statistical method
to solve a multivariate problem.  For example, assume a mine drainage data set contains 100
water samples (i.e., number of observations, N = 100) which have been analyzed for 20 chemical
constituents (i.e., number of parameters, p = 20), an N x p data matrix of 100 x 20 results, within
which some of the parameters may be highly correlated or dependent upon each other (e.g.,
acidity, sulfate, and iron may vary in a closely associated pattern).  If the problem to be solved is
�how many independent sources of information are contained in the data matrix,� a multivariate
or �p-dimensional� problem exists that should be addressed with a multivariate statistical method
such as principal components analysis or factor analysis.  The evaluation of the shape of the
frequency distribution of any or all of the 20 variates, in a univariate statistical context, may be
an important part of the data analysis process, but it would not solve the multivariate problem.

As the level of sophistication and rigor of the statistical analysis increases from univariate
through bivariate and multivariate to include some very powerful statistical methods such as
time-series analysis, the requirements placed upon the quality of the data set increase in a
corresponding manner.  As described earlier, many parametric, univariate statistical methods are
based upon the assumption that the sample data are normally distributed.  Many bivariate
statistical methods, such as linear regression which uses a least-squares method to determine a
best fitting regression line, assume that the scatter of data points (when the two variates are
plotted together) occurs in a uniform pattern, known as homoscedasticity.  In general terms for
correlation and regression analyses, this means that:  (a)  the scatter of the data points does not
increase as the data values of the two variates increase, and  (b)  the data are normally distributed
orthogonal to the regression line (i.e., within sections drawn perpendicular to the regression line
at equal intervals along the line).  Many multivariate statistical methods are based upon the
assumption of joint normality of the data matrix (i.e., that all of the variates are normally
distributed).  Most multivariate statistical analyses are also greatly impeded by missing data
(e.g., where 75 of 100 water samples were analyzed for 20 parameters, and the remaining 25
samples were analyzed for 12 parameters), as adjustments are made to the data matrix in order to
enable the use of the matrix algebra necessary to mathematically solve the problem.  The proper
use of time series analysis generally requires a very large number of observations, equally
spaced in time (i.e., equal intervals between observations), with no missing data.
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Time Series Analysis
As stated earlier, the fundamental statistical problem to be addressed in determining baseline
pollution load for remining permitting and monitoring purposes is how to summarize the natural
variations in flow and water quality parameters before remining commences, in order to enable
the separation of mining-induced changes in pollution load from natural seasonal variations in
pollution load during and following remining operations.  Conceptually, this is the type of
statistical problem which is ideally solved by time-series analysis or a specialized area of time-
series analysis, known as intervention analysis.  However, the data quality requirements for these
types of statistical analyses will exceed the available data for most remining cases, and to require
remining permit applicants to collect sufficient data for these analyses would be an onerous and
expensive task.  The principles of time-series analysis will be briefly introduced here, and more
fully explained in later Chapters.  

The use of time series analysis in this report is chiefly for research purposes where adequate data
exist.  The results of research with time series analyses of relatively large mine drainage
databases provide a better understanding of the behavior of abandoned mine discharges as they
vary through time, and facilitate the application of a relatively simple quality control approach to
the statistical analysis of the smaller sets of discharge data typically used in computing baseline
pollution load in remining permits.

According to Vandaele (1983):

A time series is a collection of observations generated sequentially through time.  The
special features of a time series are that the data are ordered with respect to time, and
that successive observations are usually expected to be dependent.  Indeed, it is this
dependence from one time period to another which will be exploited in making
reliable forecasts�. It also will be useful to distinguish between a time series process
and a time series realization.  The observed time series is an actual realization of an
underlying time series process.  By a realization we mean a sequence of observed
data points and not just a single observation.  The objective of time series analysis is
to describe succinctly this theoretical process in the form of an observable model that
has similar properties to those of the process itself. (p. 3)�. A time series model
consisting of just one variable is appropriately called a univariate time series model. 
A univariate time series model will use only current and past data on one variable�..
A time series model which makes explicit use of other variables to describe the
behavior of the desired series is called a multiple time series model.  The model
expressing the dynamic relationship between these variables is called a transfer
function model.  The terms transfer function model and multiple time series model
are used interchangeably. (p. 8)�. Finally, a special form of transfer function model
is the intervention model.  The special characteristic of such a model is not the
number of variables in the model, but that one of the explanatory variables captures
the effect of an intervention, a policy change, or a new law. (p. 9).
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The use of intervention analysis to evaluate remining discharge data might be particularly
appropriate providing that adequate data quality exists.  One of the seminal works in intervention
analysis is described in Tiao and Box and Hamming (1973) and Box and Tiao (1975) in which
photochemical smog data from Los Angeles was analyzed in order to evaluate the effect of a
new law requiring the reduction of reactive hydrocarbons upon the oxidant pollution level in the
city.  This is analogous to analyzing abandoned mine drainage pollution load data collected
before, during and after remining in order to determine the effect of remining upon the level of
the baseline pollution load in the presence of significant seasonal variations.  An example of the
use of intervention analysis of abandoned mine drainage data is the study by Duffield (1985) of
the Arnot discharges, that are also featured in Chapter 4 of this report.

According to Box and Tiao (1975, p. 70):

Data of potential value in the formulation of public and private policy frequently
occur in the form of time series.  Questions of the following kind often arise:  �Given
a known intervention, is there evidence that change in the series of the kind expected
actually occurred, and, if so, what can be said of the nature and magnitude of the
change?� �   In the examples quoted, however, the data are in the form of time
series, in which successive observations are usually serially dependent and often
nonstationary and there may be strong seasonal effects.  Thus, the ordinary
parametric or nonparametric statistical procedures which rely on independence or
special symmetry in the distribution function, are not available nor are the blessings
endowed by randomization.

Intervention analysis and other methods of time series analysis are very powerful statistical tools
which would be desirable and useful in evaluating baseline pollution load data, but these types of
statistical analyses will usually be inappropriate for remining permitting due to inadequate data
availability and data quality.  Therefore, it was necessary to develop a data analysis algorithm
which recognized or allowed for the use of time-series analyses, but did not require the routine
use of these statistical methods in order to answer the desired questions about the remining
discharge data.

A flow chart outlining the data analysis algorithm for determining the baseline pollution load is
shown in Figure 3.1.  The algorithm includes evaluations of data quality, univariate statistical
analyses, bivariate statistical analyses and time series analyses methods to establish quality
control limits.  The algorithm includes steps to evaluate the normality of the frequency
distribution and transform the data if the distribution is not normal (i.e., positively skewed);
however, the use of the statistical methods in the algorithm does not require the distribution to be
normal.  The algorithm contains elements of parametric statistical analysis, but it is primarily
based upon order statistics and non-parametric statistics.
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